A Dual Algorithm for Approximating Pareto Sets in Convex Multi-criteria Optimization
نویسندگان
چکیده
We consider the problem of approximating the Pareto set of convex multicriteria optimization problems by a discrete set of points and their convex combinations. Finding the scalarization parameters that maximize the improvement in bound on the approximation error when generating a single Pareto optimal solution is a nonconvex optimization problem. This problem is solvable by enumerative techniques, but at a cost that increases exponentially with the number of objectives. The goal of this paper is to present a practical algorithm for solving the Pareto set approximation problem in presence of up to about ten conflicting objectives, motivated by application to radiation therapy optimization. To this end, an enumerative scheme is proposed that is in a sense dual to the algorithms in the literature. The proposed technique retains the quality of output of the best previous algorithm while solving fewer subproblems. A further improvement is provided by a procedure for discarding subproblems based on reusing information from previous solves. The combined effect of the proposed enhancements is empirically demonstrated to reduce the computational expense of solving the Pareto surface approximation problem by orders of magnitude.
منابع مشابه
An algorithm for approximating nondominated points of convex multiobjective optimization problems
In this paper, we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP), where the constraints and the objective functions are convex. We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points. The proposed algorithm can be appl...
متن کاملPareto-based Multi-criteria Evolutionary Algorithm for Parallel Machines Scheduling Problem with Sequence-dependent Setup Times
This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to solve the mo...
متن کاملThe Quasi-Normal Direction (QND) Method: An Efficient Method for Finding the Pareto Frontier in Multi-Objective Optimization Problems
In managerial and economic applications, there appear problems in which the goal is to simultaneously optimize several criteria functions (CFs). However, since the CFs are in conflict with each other in such cases, there is not a feasible point available at which all CFs could be optimized simultaneously. Thus, in such cases, a set of points, referred to as 'non-dominate' points (NDPs), will be...
متن کاملA decomposition method for approximating Pareto frontier in Multiobjective Integer Linear Problems
where x is an n-dimensional vector of variables, A is an m × n matrix, b is the RHS vector and the vectors ci (i = 1, ...,m) represent the coefficients of the objective functions (criteria). Let’s denote yi = fi(x), i = 1, ...,m, and let y = (y1, ..., ym) be a vector in the criteria space. The set Y ⊂ Rm composed by all possible criterion vectors y = f(x) when x ∈ X, is known as Feasible Criter...
متن کاملUrban Land-Use Allocation By A Cell-based Multi-Objective Optimization Algorithm
Allocating urban land-uses to land-units with regard to different criteria and constraints is considered as a spatial multi-objective problem. Generating various urban land-use layouts with respect to defined objectives for urban land-use allocation can support urban planners in confirming appropriate layouts. Hence, in this research, a multi-objective optimization algorithm based on grid is pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011